Week 2 write up

\[y = x^2 \]

\[r(x) = \sqrt{y} - 3 \]

\[R(x) = 1 - x^2 = 1 + 3 = 4 \]

Use the washer method to find the volume

\[V = \pi \int_{a}^{b} (R(x)^2 - r(x)^2) \, dx \]

Since the region is being revolved around the y-axis, \(y = x^2 \) must be written in terms of \(x \) as \(x = \sqrt{y} \)

To find the volume

\[V = \pi \int_{0}^{1} (4^2 - (\sqrt{y} - 3)^2) \, dx \] \[\rightarrow \text{expand} \] \[= \pi \int_{0}^{1} (16 - y + 6\sqrt{y} + 9) \, dx \]

Integrate the function \[\pi \left(7y - 4y^{3/2} - \frac{1}{2} y^2 \right) \bigg|_{0}^{1} \]

Plug in the boundary values to the equation

\[\pi \left(7(1) - 4(1)^{3/2} - \frac{1}{2} (1)^2 \right) - \left(7(0) - 4(0)^{3/2} - \frac{1}{2} (0)^2 \right) \]

Simplify to get the volume

\[\frac{5}{2} \pi \]