1. [28 points] Consider the graph of the function \(f(x) = x^3 - 6x^2 + 1 \).

\[
f'(x) = 3x^2 - 12x = 3x(x - 4) \\
f''(x) = 6x - 12 = 6(x - 2) \\
f'''(x) = 0, \text{ when } x = \frac{2}{3}
\]

(i) Find the intervals on which \(f \) is increasing.

\((-\infty, 0) \text{ and } (4, \infty)\)

(ii) Find the intervals on which \(f \) is decreasing.

\((0, 4)\)

(iii) Find the coordinates of any local maximum of \(f \).

\((0, 1)\)

(iv) Find the coordinates of any local minimum of \(f \).

\((4/3, -31)\)

(v) Find the intervals on which \(f \) is concave up.

\((2, \infty)\)

(vi) Find the intervals on which \(f \) is concave down.

\((-\infty, 2)\)

(vii) Find the coordinates of any inflection points of \(f \).

\((2/3, -15)\)
2. [16 points] Find the absolute maximum and absolute minimum values of the function \(f(x) = x^3 - 2x \) on the closed interval \([-2, 4]\). Indicate at which \(x \)-values each of these relative extrema occur.

\[f'(x) = 3x^2 - 2 \]

Critical points: \(-1, 1, 4\)

\(f(-1) = 1 + 2 = 3 \) is a local max when \(x = -1 \)
\(f(1) = 1 - 2 = -1 \) is a local min when \(x = 1 \)
\(f(4) = 64 - 8 = 56 \) is a local max when \(x = 4 \)

3. [15 points] If each edge of a cube is increasing at a rate of 3 centimeters per second, how fast is the volume increasing when \(x \), the length of an edge is 15 centimeters long?

\[V = x^3 \]
\[\frac{dx}{dt} = 3 \] is the rate of cube edge increasing
\[x = 15 \] is the current edge length

\[\frac{dV}{dt} = \frac{d}{dt}(x^3) \] is the rate of volume increasing

\[\Rightarrow \frac{dV}{dt} = 3x^2 \frac{dx}{dt} = 3(15)^2 \times 3 = 2025 \] is the rate of volume increasing.
4. [15 points] Evaluate the indefinite integral \(\int \left(\sqrt{x} + \frac{3}{x} \right) \, dx \).

\[
\int \left(\sqrt{x} + \frac{3}{x} \right) \, dx = \int x^{\frac{1}{2}} \, dx + 3 \int \frac{1}{x} \, dx \\
= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C_1 + 3 \ln |x| + C_2 \\
= \frac{2}{3} x^{\frac{3}{2}} + 3 \ln |x| + C
\]

5. [15 points] Use the method of substitution to evaluate the integral \(\int \frac{x + 1}{x^2 + 2x - 3} \, dx \).

\(U = x^2 + 2x - 3 \)
\(du = 2x + 2 \, dx \Rightarrow \frac{du}{2(x+1)} = dx \)

\[
\int \frac{x+1}{x^2+2x-3} \, dx = \int \frac{x+1}{U} \cdot \frac{du}{2(x+1)} = \frac{1}{2} \int \frac{1}{U} \, du \\
= \frac{1}{2} \ln |U| + C = \frac{1}{2} \ln |x^2 + 2x - 3| + C
\]
6. [15 points] Use integration by parts to evaluate the integral \(\int x^2 e^x \, dx \).

\[
\begin{align*}
& u = x^2 \\
& dv = e^x \, dx \\
& du = 2x \, dx \\
& v = e^x
\end{align*}
\]

\[
\begin{align*}
\int x^2 e^x \, dx &= x^2 e^x - \int 2xe^x \, dx \\
&= x^2 e^x - 2e^x \left[x e^x - \int e^x \, dx \right] \\
&= x^2 e^x - 2xe^x + 2e^x + C
\end{align*}
\]

7. [16 points] Find the area enclosed by the graphs of \(f(x) = x^2 \) and \(g(x) = x + 2 \).

\[
f(x) = g(x) \implies x^2 = x + 2 \implies x^2 - x - 2 = 0
\]

\[
\implies (x-2)(x+1) = 0
\]

\[
x = 2, \, x = -1
\]

Area is \(\int_{-1}^{2} g(x) - f(x) \, dx \)

\[
\begin{align*}
&= \int_{-1}^{2} x + 2 - x^2 \, dx \\
&= \left. \left(\frac{x^3}{3} + 2x - \frac{x^3}{3} \right) \right|_{-1}^{2} \\
&= \left(\frac{8}{3} + 4 - \frac{8}{3} \right) - \left(\frac{1}{3} - 2 + \frac{1}{3} \right) \\
&= 6 - \frac{8}{3} + \frac{3}{2} - \frac{3}{2} = \frac{15}{2} - 3 = \frac{9}{2}
\end{align*}
\]