1. [8 points] Solve for x: \(\left(\frac{1}{2} \right)^{1-x} = 4 \)

2. [8 points] Solve for x: \(\log_3(3x - 2) = 2 \)

3. [8 points] Write as a single logarithm: \(3 \log_5(3x + 1) - 2 \log_5(2x - 1) - \log_5 x \)

4. [8 points] What annual rate of interest compounded continuously is required to triple an investment in 20 years?

5. [8 points] \(\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x} = \)
6. [10 points (1 point each)] Let \(f(x) = \begin{cases} x^2 & \text{if } x \leq 1 \\ x & \text{if } 1 < x \leq 2 \\ x - 1 & \text{if } 2 < x \end{cases} \)

(Write DNE if the limit or value does not exist.)

(a). \(\lim_{x \to 1^-} f(x) = \)

(b). \(\lim_{x \to 1^+} f(x) = \)

(c). \(\lim_{x \to 1} f(x) = \)

(d). \(f(1) = \)

(e). \(\lim_{x \to 2^-} f(x) = \)

(f). \(\lim_{x \to 2^+} f(x) = \)

(g). \(\lim_{x \to 2} f(x) = \)

(h). \(f(2) = \)

(i). Is \(f \) continous at 1?

(j). Is \(f \) continous at 2?
7. [12 points] For a certain production facility, the cost function is

\[C(x) = 2x + 5 \]

and the revenue function is

\[R(x) = 8x - x^2 \]

where \(x \) is the number of units produced and sold, and \(R \) and \(C \) are measured in millions of dollars. Find the following:

(a). Find the marginal revenue.

(b). Find the marginal cost.

(c). Find the break-even point(s) [the number(s) \(x \) for which \(R(x) = C(x) \)]

(d). Find the number \(x \) for which marginal revenue equals the marginal cost.
8. [8 points] Find the equation of the tangent line to the graph of \(f \) at the point \((1, 0)\), where \(f(x) = x \ln x \).

9. [8 points] Find \(f'(x) \) where \(f(x) = \frac{e^x}{x+1} \).

10. [10 points] Find \(\frac{dy}{dx} \) where \(y = 2x^3(4x - 3)^5 \).
11. [8 points] If a rock falls from a height of 40 meters on the planet Jupiter, then its height H after t seconds is approximately

$$H(t) = 40 - 10t^2$$

(a). What is the average velocity of the rock from $t = 0$ to $t = 1$?

(b). What is the instantaneous velocity at time $t = 1$?

(c). What is the acceleration of the rock?

(d). When does the rock hit the ground?
12. [14 points] Consider the graph of the function \(f(x) = 2x^3 - 6x \).

(i). Find the intervals on which \(f \) is increasing.

(ii). Find the intervals on which \(f \) is decreasing.

(iii). Find the coordinates of any local maximums of \(f \).

(iv). Find the coordinates of any local minimums of \(f \).

(v). Find the intervals on which \(f \) is concave up.

(vi). Find the intervals on which \(f \) is concave down.

(vii) Find the coordinates of any inflection points of \(f \).
13. [10 points] What is the slope of the tangent line to the curve \(xy^2 - x^2 y = 2 \) at the point \((1, 2)\)?

14. [10 points] Find the absolute maximum and absolute minimum values of the function \(f(x) = x^2 - 2x \) on the closed interval \([-4, 4]\). Indicate at which \(x \)-values each of these relative extrema occur.
15. [10 points] If each edge of a cube is increasing at a rate of 3 centimeters per second, how fast is the volume increasing when x, the length of an edge, is 15 centimeters long?

16. [10 points] Evaluate the indefinite integral $\int \frac{dx}{2x - 5}$.
17. [10 points] Evaluate the infinite integral \(\int x \sqrt{x^2 + 1} \, dx \).

18. [10 points] Evaluate the infinite integral \(\int x \ln x \, dx \).
19. [10 points] Find the area enclosed by the graph of \(f(x) = x^2 - 1 \) and the \(x \)-axis.