1. Section 5.3; Page 378; Problems: 14, 25, 30, 47, 70

2. Section 5.4; Page 391; Problems: 1, 12, 14, 15, 25, 30, 42

3. Section 5.6; Page 404; Problems: 1, 5, 6, 7, 9, 10, 15, 16

Problem 5.3.30 The function is \(f(x) = x^3 + 6x^2 + 2 \).

The domain is all reals. The \(-x\)-ints are too hard to find, the \(-y\)-intercept is \((0, f(0)) = (0,2)\).

\(f'(x) = 3x^2 + 12x = 3x(x+4) \) thus the split points are 0 and -4 so \(f \) is increasing on \((-\infty, -4)\) and \((0, \infty)\) and decreasing on \((-4, 0)\). Local maximum at \((-4, \frac{10}{3})\) and local minimum at \((0,2)\).

\(f''(x) = 6x + 12 = 6(x+2) \) so we have one split point at -2 thus \(f \) is concave down on \((-\infty, -2)\) and concave up on \((-2, \infty)\) so we have an inflection point at \((-2, -20)\). There are no asymptotes and end behavior is like \(x^3 \), down to the left and up to the right. Hopefully the graph looks ok.

Problem 5.4.25 If we label the corner piece cut out as an \(x \) by \(x \) square the dimensions of our cardboard box are \((12-2x) \) by \((12-2x) \) by \(x \), thus the volume of our box is \(V(x) = x(12-2x)^2 \).

\(V'(x) = 2(12-2x)(-2) + (12-2x)^2(1) = (-12)(x-2)(6-x) \) where \(0 \leq x \leq 6 \), thus our critical points are 0, 2 and 6 but 0 and 6 give 0 volume and \(V(2) = 128 \) cubic cm. which is a maximum since \(V''(x) > 0 \) on our interval of concern. Thus the dimensions are 8 x 8 x 2.

Problem 5.4.30 \(V = \pi r^2 h \) and \(V = 10 \) so \(10 = \pi r^2 h \Rightarrow h = 10/(\pi r^2) \). The cost of the top and the bottom is \((2)(\pi r^2)(82) = 4\pi r^2 \) and the cost of the sides is \((2\pi rh)(1.5) = 3\pi rh \) so the total cost is \(C = 4\pi r^2 + 3\pi rh \) and substituting our \(h \) and simplifying we have \(C(r) = 4\pi r^2 + 30r^{-1} \) with \(r > 0 \). We find the first and second derivatives to find local extrema and to tell whether or not it is a maximum or minimum. \(C'(r) = 8\pi r - 30r^{-2} = \frac{2(4\pi r^3 - 15)}{r^2} \) thus we have one critical point when \(r = \sqrt{\frac{15}{4\pi}} \). But \(C''(r) = 8\pi + 60r^{-3} > 0 \) when \(r > 0 \) so we have found an \(r \) which minimizes cost and the corresponding \(h \) is \(\frac{10}{\pi (\frac{15}{4\pi})^{2/3}} \).

Problem 5.6.9 Let the edges of the cube be labeled by \(x \), then the volume of the cube is \(V = x^3 \). We also know \(\frac{dx}{dt} = 3 \) and want to find \(\frac{dV}{dt} \) when \(x = 10 \). Differentiating \(V = x^3 \) with respect to \(t \) we get \(\frac{dV}{dt} = 3x^2 \frac{dx}{dt} \) thus \(\frac{dV}{dt} = 3(10^2)(3) = 900 \) cm\(^3\) per second.

Problem 5.6.10 Let \(r \) be the radius of the sphere and \(V \) be the volume, then \(V = \frac{4}{3}\pi r^3 \). We are given that \(\frac{dr}{dt} = 1 \) and want to find \(\frac{dV}{dt} \) when \(r = 6 \). Differentiating both sides with respect to \(t \) gives \(\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \) and substituting gives \(\frac{dV}{dt} = 144\pi \).