This worksheet is about the Fundamental theorems of calculus and u-substitution. The ability to analyze a solution is a very important skill and will help you analyze your own work in the future. To give you practice with this I am going to have you analyze some solutions that I came up with grade each one. The problems with be worth 4 points each. 1 point will be awarded for organization, 1 point for showing all work, 1 point for justifying the steps and 1 point for the correct solution.

1. Find dy/dx if $y = \frac{d}{dx} \int_{a}^{x} (t^3 + 1) \, dt$.

 $f(t) = t^3 + 1$ so $dy/dx = x^3 + 1$.

2. Find dy/dx if $y = \frac{d}{dx} \int_{x}^{a} (t^3 + 1) \, dt$.

 $dy/dx = x^3 + 1$.

3. Find dy/dx if $y = \frac{d}{dx} \int_{b}^{x^2+2x-3} (t^3 + 1) \, dt$.

 $dy/dx = (x^3 + 1)(2x + 2)$.

 Because we take the derivative of the top part and multiplied.
4. Find \(\frac{dy}{dx} \) if \(y = \frac{d}{dx} \int_{\sin(x)}^{3} \frac{1}{t} \, dt \).

First we let \(y = G(u) = \int_{u}^{3} \frac{1}{t} \, dt \) and note that \(u(x) = \sin(x) \). To apply the fundamental theorem of calculus we need to switch the bounds on our integral which also changes the sign of the integral so we have

\[
G(u) = -\int_{3}^{u} \frac{1}{t} \, dt.
\]

We are looking for \(\frac{dy}{dx} \) so when we take the derivative of \(y \) we must remember that \(u \) is a function of \(x \) so the chain rule is required.

\[
\frac{d}{dx}[G(u)] = G'(u) \cdot u'(x) = -\ln |u| \cdot \cos(x) = -\ln |\sin(x)| \cdot \cos(x).
\]

5. Suppose that \(f \) has a positive derivative for all values of \(x \) and that \(f(1) = 0 \). Which of the following statements must be true about the function

\[
g(x) = \int_{0}^{x} f(x) \, dx.
\]

Each part is worth 4 points.

(a) \(g \) is a differentiable function of \(x \).

True, it’s obvious.

(b) \(g \) is a continuous function of \(x \).

False, not possible because of \(f \).

(c) The graph has a horizontal tangent at \(x = 1 \).

The function \(f \) is always increasing and \(f(1) = 0 \) means that the graph of \(f \) is below the \(x \)-axis from 0 to 1 and then is above the \(x \)-axis from 1 to \(\infty \). The function \(g(x) \) tells us the area between the graph of \(f \) and the \(x \)-axis from 0 to \(x \). When \(0 < x < 1 \) \(g(x) \) is going to be negative and since we are adding more area below that graph \(g'(x) \) is also going to be negative. However, when \(x = 1 \) the area under the graph of \(f \) is not changing so \(g'(1) = 0 \). Finally, when \(1 < x \) we are adding positive area so \(g'(x) \) will be positive.

To sum it up:

\(g'(x) < 0 \) from \(x = 0 \) to \(x = 1 \)
\[g'(x) = 0 \text{ when } x = 1 \]
\[g'(x) > 0 \text{ when } x > 1, \]
thus \(g \) has a horizontal tangent line at \(x = 1 \).

(d) \(g \) has a local maximum at \(x = 1 \).
False, the final summary of part (c) tells us this is not the case.

(e) \(g \) has a local minimum at \(x = 1 \).
True.

(f) The graph of \(g \) has an inflection point at \(x = 1 \).
False. We find the second derivative of \(g(x) \) which is \(f''(x) \) which is always positive.

(g) The graph of \(dg/dx \) crosses the \(x \)-axis at \(x = 1 \).
\[f(1) = 0 \]

6. Evaluate \[\int_{0}^{\pi} 1 + \cos(x) \, dx. \Rightarrow \pi + 1 - 1 = \pi \]
7. Evaluate \(\int 2(2x + 5)^3 \, dx \).

Let \(u = 2x + 5 \), then \(du = 2 \, dx \). Solving for \(dx \) we have \(dx = \frac{du}{2} \). Now we substitute \(u \) and \(dx \) and pull out the constant 2 and have

\[
\int 2(2x + 5)^3 \, dx = 2 \int u^3 \frac{du}{2} = \int u^3 \, du = \frac{u^4}{4} + c.
\]

Now we substitute \(u \) back in and we have

\[
\int 2(2x + 5)^3 \, dx = \frac{(2x + 2)^4}{2}.
\]

8. Evaluate \(\int x^3 \sqrt{x^2 + 1} \, dx \).

Let \(u = x^2 + 1 \) then \(du = 2x \, dx \). Solve for \(dx \) and we have \(dx = \frac{du}{2x} \). Now substitute and we have

\[
\int x^3 \sqrt{x^2 + 1} \, dx = \int x^3 u^{1/2} \, du = \int x^2 u^{1/2} \, du.
\]

But now our variables are mixed together. We would like to get \(x^2 \) in terms of \(u \)... oh yeah, we know \(u = x^2 + 1 \) so subtract 1 from both sides and we have \(u - 1 = x^2 \). Now we make this substitution and have

\[
\int x^2 u^{1/2} \, du = \int (u - 1)u^{1/2} \, du = \int u^{3/2} - u^{1/2} \, du = \frac{u^{5/2}}{5/2} - \frac{u^{3/2}}{3/2} + c.
\]