Let \(f(x) \) be a function and \(c \) be a positive number, then:

1. \(f(x) + c \) shifts the graph of \(f(x) \) **vertically up** by \(c \) units, e.g. if the point \((x, y)\) is on the graph of \(f(x) \) then \((x, y + c)\) is on the graph of \(f(x) + c \).
2. \(f(x) - c \) shifts the graph of \(f(x) \) **vertically down** by \(c \) units, e.g. if the point \((x, y)\) is on the graph of \(f(x) \) then \((x, y - c)\) is on the graph of \(f(x) - c \).
3. \(f(x + c) \) shifts the graph of \(f(x) \) **horizontally to the left** by \(c \) units, e.g. if the point \((x, y)\) is on the graph of \(f(x) \) then \((x - c, y)\) is on the graph of \(f(x + c) \).
4. \(f(x - c) \) shifts the graph of \(f(x) \) **horizontally to the right** by \(c \) units, e.g. if the point \((x, y)\) is on the graph of \(f(x) \) then \((x + c, y)\) is on the graph of \(f(x - c) \).
5. If \(c > 1 \) then \(cf(x) \) **stretches the graph vertically** by a scale of \(c \) units e.g. if \((x, y)\) is on the graph of \(f(x) \) then \((x, cy)\) is on the graph of \(cf(x) \).
6. If \(0 < c < 1 \) then \(cf(x) \) **compresses the graph vertically** by a scale of \(c \) units e.g. if \((x, y)\) is on the graph of \(f(x) \) then \((x, cy)\) is on the graph of \(cf(x) \).
7. If \(c > 1 \) then \(f(cx) \) **compresses the graph horizontally** by a scale of \(c \) units e.g. if \((x, y)\) is on the graph of \(f(x) \) then \((\frac{x}{c}, y)\) is on the graph of \(f(cx) \). Since \(c > 1 \) notice that \(xc \) is smaller than \(x \). You can think of it as getting to each \(y \) value faster.
8. If \(0 < c < 1 \) then \(f(cx) \) **stretches the graph horizontally** by a scale of \(c \) units e.g. if \((x, y)\) is on the graph of \(f(x) \) then \((\frac{x}{c}, y)\) is on the graph of \(f(cx) \). Since \(0 < c < 1 \) notice that \(xc \) is smaller than \(x \). You can think of it as getting to each \(y \) value slower.
9. The graph of \(-f(x)\) **reflects the graph of \(f(x) \) over the \(x \)-axis** e.g. if \((x, y)\) is on the graph of \(f(x) \) then \((x, -y)\) is on the graph of \(-f(x)\).
10. The graph of \(f(-x)\) **reflects the graph of \(f(x) \) over the \(y \)-axis** e.g. if \((x, y)\) is on the graph of \(f(x) \) then \((-x, y)\) is on the graph of \(f(-x)\).
11. For consistency, and to avoid some pitfalls, a good order to do your transformations in is:

 1. Reflections
 2. Stretches and Compressions
 3. Shifts